
Predicting sub-cellular location of proteins using Machine
Learning

Yoga Advaith Veturi
University College London, UK

advaith.veturi.17@ucl.ac.uk,

Abstract -
Predicting the location of a protein within the cell can help

in elucidating its function and deducing its involvement in
certain biochemical pathways. In this study, machine learn-
ing models are investigated to classify amino acid sequences
into five classes - cytosolic, mitochondrial, secreted, nuclear
and “other". Two models are explored, which are support
vector machines and neural networks. These models are
trained and tested using a dataset of ≈ 11,000 protein se-
quences. From the results, it is seen that the test set accuracy
is similar for both models (≈ 65-67%), but the support vector
machine demonstrates the better performance, as indicated
by its macro-F1 score (0.7066). Future steps of research to
improve these results includes performing further feature
analysis and exploring other sequence-based models such as
recurrent neural networks and attention-based models.

1 Introduction
Proteins play a crucial role in various biological pro-

cesses within the body. They are responsible for catalysing
metabolic reactions, transporting molecules from one area
of the body to another, mediating cell repair, and also form
a part of our immune system. In order to elucidate a pro-
tein’s function, one key piece of information is the location
of the protein within the cell. Sub-cellular locations can
be broadly classified into 5 different types:

1. Cytosolic proteins - these lie within the cell cyto-
plasm, but not in the organelles. They are important
for regulating intracellular reactions. Examples in-
cludeG3BP1which is involved in signal transduction
pathways and the MTHFS enzyme which is required
for metabolic reactions in the cytosol [1].

2. Extracellular/Secreted proteins - these are proteins
produced from cells and play a role in cell signalling
pathways. Examples of these include digestive en-
zymes such as amylase and peptidase which are se-
creted from the salivary glands and pancreas to break
down proteins and complex sugars, facilitating their
absorption into the blood stream.

3. Nuclear proteins - These proteins are found within

the cell’s nucleoplasm and are crucial for processes
such as DNA replication, transcription, gene regu-
lation and epigenomic activating/silencing of genes.
Examples includePDS5Awhich keeps the sister chro-
matids in place during mitosis and TP53BP1 which
is regulates the DNA damage response [1].

4. Mitochondrial proteins - these proteins are situated
within the mitochondria and participate in the pro-
cesses that generate ATP in the cell. Examples in-
clude the CS protein involved in the citric acid cycle
and LRPPRC which plays a role in mitochondrial
gene transcription [1].

Determining the subcellular location of a protein
through experimental methods can be time-consuming.
Traditionally, this has been performed using immunofluo-
rescence labelling where the protein of interest is tagged
with a fluorescent protein like green-fluorescence protein
(GFP) and using a fluorescence microscope, localization
of the protein is studied [2]. However, over the past couple
of years, due to the advances in high-throughput sequenc-
ing technology, the genomic and amino acid sequences
have been determined for more than 3000 species, causing
an increased population of bioinformatic databases. With
this increased abundance of protein data, practioners have
resorted to more computational approaches that can pre-
dict the protein localization based on patterns found in the
data, which is more efficient compared to the experimental
methods.
Various studies have been conducted to solve the protein

subcellular location prediction task. The approaches used
in these studies can be broadly classified into three types:
(1) Amino acid compositionmethods (2) Sequence homol-
ogy and motif analysis methods and (3) Hybrid methods
[3]. Looking at the firstmethod, in Cedano et al 1997 [4], it
was found through correlation analysis that the amino acid
composition can be used to determine subcellular location,
from which they developed ProtLock, a system to clas-
sify the protein into based on the amino acid composition
vector. CELLO is another composition-based tool which
primarily predicts protein locations for gram-negative bac-
teria [5]. For the secondmethod, examples includeMott et
al 2002 [6] which used a homology-based strategy to deter-

mailto:advaith.veturi.17@ucl.ac.uk

mine the probability of proteins being secreted, nuclear or
cytosolic proteins based on co-occurrence of SMART do-
mains. Marcotte et al 2000 [7] investigated classification
of proteins into mitochondrial or non-mitochondrial loca-
tions based on phylogenetic profiles. Some methods use
hybrid models and machine learning methods - for exam-
ple in Chia-Yu Su et al 2007 [8], two models were used to
classify proteins from gram-negative bacteria into the cy-
toplasm, the inner membrane, periplasm, outer membrane
and extracellular space - these include PSL101 which is
a set of one-vs-one support vector machines and PSLsse
which uses protein secondary structure homology align-
ment. Reinhardt and Hubbard 1998 [9] used deep neural
networks to classify sequences from prokaryotic and eu-
karyotic cells into cytoplasmic, nuclear, mitochondrial and
secreted. In fact, the PSORT tool 1999 [10], which is one
of the first efforts to computationally determine subcellu-
lar location, is also a hybrid model which uses amino acid
composition, motifs and N-terminal information (which
acts as a “postal-code” for the amino acid sequence).
In this report, sub-cellular location prediction of pro-

teins is performed using machine learning methods.
Specifically, two models will be investigated for this task:
a Support Vector Machine (SVM) and a Neural Network.
While classical machine learning algorithms like SVMs
have been greatly explored in the literature for this task,
neural networks are relatively less explored. Furthermore,
the flexibility neural networks offer in terms of model de-
sign is quite large, allowing for further development and
research. Subsequent sections will discuss these methods
in detail.

2 Methodology
2.1 Approaches

A brief outline on SVMs and Neural Networks is pro-
vided subsequently. Specific implementational details are
provided in the Model training, Cross-validation and
Evaluation sections.

2.1.1 Support Vector Machines (SVMs)

The SVM algorithm is a class of supervised learning
algorithms that aims to find the optimal separating hyper-
plane

�w,1 = w) x + 1

that maximises the margin between two classes of data.
w and 1 are the parameters that define this hyperplane.
The margin is defined as the distance between the hyper-
plane and two closest points on either side of the surface.
Specifically in our case, as the data may not be linearly
separable, we implement a “soft-margin" SVM, where the
objective function is of the form

min
1
2

w)w + �
<∑
8=1

b8

The first term represents the optimization of the margin
itself while the second term represents the total misclas-
sification error. The parameter � is crucial as it controls
the trade-off between these two terms. Specifically, it
controls how much we wish to reduce misclassifications
versus how much we care about computing the optimal
decision boundary. Another important component of the
SVM is the kernel function, which allows us to map the
data to higher-dimensional spaces, making it easier to find
the separating hyperplane. In this report, the radial basis
kernel function (RBF) is used, which has a parameter W
that controls the variance of the kernel. Lastly, as this is
a multi-class classification task, the SVM is implemented
using a "one-vs-rest" approach i.e a separate sub-classifier
is trained for predicting "Secreted vs Not secreted", "Mito-
chondral vs Not mitochondral" etc and the final prediction
is based on the most confident sub-classifier.

2.1.2 Neural Networks

Neural networks are popular algorithms in machine
learning and have been used for various tasks such as
image classification, anomaly detection, object detection
and natural language processing. These are essentially
complex non-linear functions for which the parameters
are learned by optimizing a loss function measuring the
difference between the true label and the predicted label.

Neural networks are highly flexible when it comes to
hyperparameter tuning and searching for the best model.
In general, these models can be tuned at two levels: first is
the architecture of the network itself, where adding more
layers will increase the number of learnable parameters
and as a result, the model complexity. The second level
is the optimization procedure which involves modifying
hyperparameters such as the learning rate, the optimizer
itself and the batch-size, in order to speed convergence dur-
ing training. In order to prevent overfitting of the models,
regularization methods including Dropout and L2 regular-
ization can also be modified.

2.2 Dataset

The dataset contains totally 11,224 sequences in fasta
format. Note that every sequence can be assumed to be
non-homologous, and belongs to the set of classes

C = {Cytosolic,Mitochondrial,Nuclear,Other, Secreted}

The “Other" class contains prokaryotic sequences that
can contaminate samples during the data collection pro-
cess. These are just treated as a separate class in the
problem, to ensure that our models also learn sequences

that do not come under the four main categories of protein
sub-cellular location. The proportions of the classes is vi-
sualized in Figure 1. To apply our models on completely
new data, an additional “blind" dataset is also provided,
containing 20 unlabelled sequences.

Figure 1: Proportion of the different classes within the
whole dataset

2.3 Feature Selection

Feature selection was performed by analysing the se-
quences using the ProtParam Module in the BioPython
library. Eight features were short-listed, for which a de-
scription is provided in Table 1. Note that the global and
local amino acid composition is measured for each of the
20 amino acids, hence there are totally 46 short-listed fea-
tures.
The correlation between the features was studied by

computing the Pearson correlation coefficient A . The result
is visualized as a heatmap in Figure 4 inAppendixB. From
these results, it is noticeable that the sequence length is
strongly correlated (A > 0.95) with the molecular weight,
hence the molecular weight is omitted from the feature
set. For the rest of the features, the correlations appear
to have moderate-weak correlation (A < 0.70), hence they
are retained. Totally, there are 45 features which will be
used as predictors for our models.

2.4 Data Pre-processing

The dataset was standardized in order to ensure that
the features are all on a similar scale. The classes in
C were represented using a numerical encoding Cnum =

{0, 1, 2, 3, 4, 5}.
During the feature selection method, it was also found

that some sequences contained letters "U", "B" and "X"

which could not be interpreted by the Protparammodule,
hence these were ignored, resulting in a final dataset of
shape (11160, 45).

2.5 Model Training and Cross Validation

2.5.1 Dataset Splitting

An 80:20 splitting was performed on the datset, where
80% of the data was used for training while the remaining
20% was used as a holdout test set to evaluate model
performance on unseen sequences.

2.5.2 SVM model search

For the soft-margin SVM, the hyperparameters of inter-
est were the � value which controls the “hardness" of the
margin, and W, the variance of the RBF kernel. The best
values for these parameters were determined by perform-
ing a grid-search. The chosen values of � to experiment
withwere [1, 10, 100] and the chosen range of W valueswas
[2−7, 2−8, 2−9, ..., 2−15]. For each of the hyperparameter
combinations, five-fold cross validation was performed;
the training data was divided into five groups, where one
group was used as a "validation" set while the remaining 4
were used as a training set, and this was repeated for every
grouping. Note also that the training set data was shuffled
before performing the cross-validation, in order to elimi-
nate bias. The best hyperparameters from the grid search
were selected based on those which showed the smallest
mean validation set accuracy. The final model was then
re-trained with these best hyperparameters.

2.5.3 Neural Network model search

For the neural network model, the hyperparameters of
interest were the layer architecture, describing the com-
plexity of the model, and the amount of dropout regu-
larization, which deals with overfitting. From initial ex-
periments, it was found that network architectures having
≥ 1 hidden layers were prone to overfitting, hence only
three-layered networks (including input and output layer)
were investigated. To counter this effect of overfitting,
dropout values of [0.0(No regularization), 0.1, 0.2, 0.3]
were tested. This is summarized in Table 2 along with
the values of other hyperparameters that were kept fixed.
As in the SVM model, a grid search was performed over
the Layer configurations and the dropout values. For each
combination of hyperparameters, five-fold cross validation
was performed. The best hyperparameters were those that
demonstrated the smallest mean validation set loss. Using
these best hyperparamters, the neural network architecture
was again trained.

Feature Description
Sequence length Number of amino acids in sequence
Molecular Weight Sum of the weights of all the amino acids in the sequence.
Isoelectric point The pH at which the protein is neutral (no electric charge).
Global amino acid
composition

Percentage of each of the 20 amino acids in the entire sequence

Local amino acid
composition

Percentage of each of the 20 amino acids within a window of amino
acids. This is chosen to be the first 50 amino acids.

Aromaticity Represents the stability of the protein, as measured by the composition
of aromatic rings.

Instability Index Represents the stability of the protein in a test tube.
Gravy Represents the hydrophobicity of the peptide, calculated by the averaging

the hydropathy values of all amino acids.

Table 1: Selected Features from ProtParam library

Hyperparameter Value
Layers [45, 5], [45, 16, 5], [45, 32,

5]
Dropout [0.0, 0.10, 0.20, 0.30]
Activation function
(Hidden layer)

Rectified linear unit (ReLU)

Loss Cross Entropy
Performance metric Accuracy
Optimizer Adam
Learning rate 10−4
Batch size 128
Epochs 300

Table 2: Hyperparameters configurations for neural
network. The Layers and Dropout are modified while rest

are kept fixed.

2.6 Model Evaluation
2.6.1 Prediction on test data

The best SVM and neural network models from the grid
search+cross-validation were evaluated by computing the
predictions on the held out test dataset (20% of the data
from the data splitting). Confusion matrices were created
by comparing the true labels with the predicted labels.
Using the confusion matrices, the following metrics were
calculated:

1. Classification Accuracy =) %+) #
) %+) #+�%+�#

2. Precision =) %
) %+�%

3. Recall =) %
) %+�#

4. F1-score = 2 ∗ Precision·Recall
Precision+Recall

)#, �#,)%, �% are the true negatives, false negatives,
true positives and false positives respectively. Note that
as this is a multi-class classification task, the metrics were
calculated for each class separately. The precision for each
class is computed by dividing the diagonal elements of the
confusion matrix by the sums along their corresponding
rows. For the recall, the diagonal elements are divided by

the sum along their corresponding columns. The per-class
F1-scores are then computed using the per-class precision
and recall values. Taking the average of these three met-
rics over the classes gives the "macro"-precision, "macro"-
recall and "macro"-F1 score. The macro-F1 score is es-
pecially important as it summarizes the overall model per-
formance. The best model is defined to be the one with
the greatest macro-F1 score.

2.6.2 Confidence Estimation on model predictions

When predicting on test examples, it is also helpful to
understand the confidence level of the different classifiers
for that particular training example. SVMs usually do
not provide these class probabilities usually however this
could be determined using an extended version of Platt
scaling which essentially trains the SVM with a sigmoid
function that maps the values to a probability [11]. This
functionality is built-in to the Scikitlearn’s SVM module.
For neural networks, the confidence level for a class

can be described by the linear activation output, which
intuitively represents a relative scoring for each class. The
activations are converted into a probability distribution
over the classes by applying the softmax function

ŷ = f(5 (-))

f(z) = exp I8∑
9=1 exp I 9

where z is the vector containing activations I8 outputted
by the neural network 5 (-) for the classes and f(·)
is the softmax function. ŷ is the vector of class distribu-
tion values. Typically when predicting on new input data,
these class probabilities are converted into the final class
prediction by taking the argmax of ŷ.

2.6.3 Prediction on blind test data

Finally, the best model (chosen using the macro-F1
score) is applied on the dataset of 20 blind test sequences

to generate predictions along with their confidence level
(see previous section).

2.7 Code

This study was implemented in an IPython Notebooks.
An in-depth code briefing is provided in Appendix A.

3 Results
3.1 Best models fromGrid Search + Cross-Validation

The results for the grid search over the various hyper-
parameter combinations and cross-validation experiments
showed that the best SVM model had � = 10 and W = 2−7
for the RBF kernel. For the neural network implementa-
tion, the best performing model had an architecture [45,
32, 5] and a dropout=0.0. Note the remaining hyperparam-
eters are kept the same as listed in Table 2. The validation
accuracies for each fold of cross-validation on the SVM
is presented in Table 3, along with the mean and stan-
dard deviation. For the neural network, the validation loss
and accuracy computed on each fold of cross-validation is
presented in Table 4, along with the mean and standard de-
viation. Raw data for all other model variants is presented
in Appendix C.

Fold Val Accuracy
1 0.6618
2 0.6540
3 0.6691
4 0.6711
5 0.6706

Mean ± STD 0.66532 ±0.00657

Table 3: Cross Validation results for best SVM model

Fold Val Loss Val Accuracy
1 0.8702 0.632
2 0.7998 0.665
3 0.7493 0.681
4 0.7348 0.691
5 0.7675 0.711

Mean ± STD 0.7843 ±0.04812 0.6760 ±0.02658

Table 4: Cross Validation results for best Neural Network
model

3.2 Performance of best SVM and Neural Network

The best models from the grid search and cross valida-
tion experiments were retrained on the full training set and
performance was measured on the holdout test set. The
results for both models are presented in Tables 5. Predic-
tions on a few holdout test sequences are also presented in
Appendix D, along with their confidence estimates.

Train Test
Model Loss Accuracy Loss Accuracy
SVM - 0.8094 - 0.6783
NN 0.7487 0.694 0.8405 0.6532

Table 5: Model Performance on training and test sets

3.3 Confusion Matrices

The confusion matrices for the best SVM model and
the Neural Network model from the grid search+cross-
validation are presented in Figures 2 and 3.

Figure 2: Confusion matrix for SVM model

Figure 3: Confusion matrix for Neural Network model

3.3.1 Metrics calculated from Confusion matrices

The per-class Precision, Recall and F1 metrics and their
"macro-" values (mean) for the SVM and Neural Network
models are presented in Tables 6 and 7.

Precision Recall F1
Cyto 0.543 0.566 0.554
Mito 0.736 0.691 0.713

Nucleus 0.621 0.622 0.622
Other 0.843 0.868 0.855

Secreted 0.819 0.761 0.789
Mean 0.7124 0.7016 0.7066

Table 6: Precision, Recall and F1 metrics for SVM

Precision Recall F1
Cyto 0.550 0.520 0.535
Mito 0.690 0.653 0.671

Nucleus 0.604 0.654 0.628
Other 0.765 0.815 0.789

Secreted 0.784 0.708 0.744
Mean 0.6784 0.6699 0.6733

Table 7: Precision, Recall and F1 metrics for Neural
Network

3.4 Performance on blind test sequences

The class predictions for the blind test sequences, along
with their confidence (represented as High/Medium/Low
where High = ≥ 0.70, Medium = between 0.5-0.7 and Low
= < 0.5), are presented in Table 8. These were predicted
using the best model (SVM, macro-F1 score = 0.7066).

4 Discussion
Over the course of this study, two machine learning

models, namely an SVMand a neural networkwere trained
and analysed for their performance on the protein subcel-
lular location prediction task. SVMs were the first area of
focus due to the benefit of using kernel tricks which could
expand the dimensionality of the dataset and help to find
a decision boundary that separates all five classes. Neural
networks were chosen due to their ability to learn highly
complex functions that could represent the relationship
between the inputs sequences and output locations.

From the present findings, we can conclude that the
SVM demonstrates a better performance. This is indi-
cated by the higher macro-F1 score of the SVM (=0.7066)
versus the score for the neural network (=0.6733) com-
puted on the holdout test set. Although, it is surprising
to see from the cross-validation results in Tables 3 and 4
that the mean validation set accuracy is very similar for
both models. This actually makes the SVM a much more
attractive choice of model, because it requires relatively

lesser hyperparameter tuning to identify the best model
and can achieve just as good performance.
Setting aside differences between the models, the gen-

eral performance on this task is quite poor, with both
models achieving around 65-67% accuracy. One major
contributor to this result is the fact that the models tend
to misclassify cytoplasmic and nuclear protein sequences.
This is evident from the confusion matrices in Figures 2
and 3, where the off-diagonal values are largest for the
cytoplasmic-nuclear and nuclear-cytoplasmic cells. This
suggests that the models tend to confuse cytoplasmic se-
quences with nuclear sequences. Furthermore, it is seen
that the models misclassify cytoplasmic sequences worse
than nuclear sequences. This is reflected in the metrics
from Table 6 and 7, where the precision of the cytoplas-
mic sub-model is the lowest of all five sub-models.
Further analysis into this problem also revealed that

within the test set, there were 136 unique cytoplasmic
proteins that both models classified as nuclear, and 117
nuclear sequences that both models classified as cytoplas-
mic. Observing the confidences of the predictions on
these sequences, it was noticeable that for the cytoplas-
mic sequences predicted as nuclear, the second largest
confidence was placed on the "Cyto" class while for the
117 nuclear sequences predicted as cytoplasmic, the sec-
ond largest confidence was placed on the "nuclear" class,
which validates how the model struggles to classify be-
tween cytoplasmic and nuclear sequences. To understand
why this was happening, summary statistics were com-
puted for the features of the 136 cytoplasmic and 117
nuclear sequences, for which results are presented in Ta-
bles 11 and 12 of Appendix E. All features have similar
the mean values which could be a possible explanation
for why the predictions were incorrect. Looking at the
predictions and precision scores for the secreted and mi-
tochondrial protein classes on the other hand, we see that
both models generally perform well on classifying these
sequences.

5 Conclusion and Next Steps
We conclude from our findings that the SVM demon-

strates the best performance at the protein sub-cellular
location task. While the overall performance is gener-
ally sub-optimal (65-67% range for accuracy), there are
still many areas of improvement. A potential next step
in research to improve our results is to focus is on fea-
ture analysis, particularly identifying unique features for
cytoplasmic and nuclear protein sequences. This could
potentially increase the accuracy of the models to the 85-
90% range. At the same time, it must be considered that
a drawback of using models like SVMs and deep neural
networks with manual feature selection methods is that
the process can be somewhat subjective (based on how

CHALLENGE SEQ01 OTHR CONFIDENCE HIGH
CHALLENGE SEQ02 MITO CONFIDENCE MEDIUM
CHALLENGE SEQ03 MITO CONFIDENCE MEDIUM
CHALLENGE SEQ04 NUCL CONFIDENCE HIGH
CHALLENGE SEQ05 CYTO CONFIDENCE MEDIUM
CHALLENGE SEQ06 MITO CONFIDENCE MEDIUM
CHALLENGE SEQ07 EXTR CONFIDENCE HIGH
CHALLENGE SEQ08 MITO CONFIDENCE LOW
CHALLENGE SEQ09 EXTR CONFIDENCE HIGH
CHALLENGE SEQ10 MITO CONFIDENCE LOW
CHALLENGE SEQ11 NUCL CONFIDENCE MEDIUM
CHALLENGE SEQ12 NUCL CONFIDENCE HIGH
CHALLENGE SEQ13 NUCL CONFIDENCE MEDIUM
CHALLENGE SEQ14 NUCL CONFIDENCE MEDIUM
CHALLENGE SEQ15 OTHR CONFIDENCE HIGH
CHALLENGE SEQ16 NUCL CONFIDENCE HIGH
CHALLENGE SEQ17 OTHR CONFIDENCE LOW
CHALLENGE SEQ18 CYTO CONFIDENCE LOW
CHALLENGE SEQ19 OTHR CONFIDENCE HIGH
CHALLENGE SEQ20 CYTO CONFIDENCE LOW

Table 8: Predictions on blind test dataset

we interpret the correlation coefficients), hence the cho-
sen features may not be truly relevant. Therefore, another
area of focus would be investigating sequence-based mod-
els such as recurrent neural networks, attention models
and other such techniques derived from the natural lan-
guage processing field. These models have the power to
analyse sequences at the amino acid level itself, which
could eliminate the loss of information when transforming
data into a new feature space, potentially delivering better
performance than SVMs and basic neural networks.

References
[1] Peter J. Thul, Lovisa Åkesson, Mikaela Wiking,

Diana Mahdessian, Aikaterini Geladaki, Hammou
Ait Blal, Tove Alm, Anna Asplund, Lars Björk,
Lisa M. Breckels, Anna Bäckström, Frida Daniels-
son, Linn Fagerberg, Jenny Fall, Laurent Gatto,
Christian Gnann, Sophia Hober, Martin Hjelmare,
Fredric Johansson, Sunjae Lee, Cecilia Lindskog,
Jan Mulder, Claire M. Mulvey, Peter Nilsson,
Per Oksvold, Johan Rockberg, Rutger Schutten,
Jochen M. Schwenk, Åsa Sivertsson, Evelina
Sjöstedt, Marie Skogs, Charlotte Stadler, Devin P.
Sullivan, Hanna Tegel, Casper Winsnes, Cheng
Zhang, Martin Zwahlen, Adil Mardinoglu, Fredrik
Pontén, Kalle von Feilitzen, Kathryn S. Lilley, Math-
ias Uhlén, and Emma Lundberg. A subcellular map
of the human proteome. Science, 356(6340), 2017.
ISSN 0036-8075. doi:10.1126/science.aal3321.
URL https://science.sciencemag.org/
content/356/6340/eaal3321.

[2] Kenneth E. Sawin and Paul Nurse. Identifica-
tion of fission yeast nuclear markers using ran-
dom polypeptide fusions with green fluorescent pro-

tein. Proceedings of the National Academy of Sci-
ences, 93(26):15146–15151, 1996. ISSN 0027-
8424. doi:10.1073/pnas.93.26.15146. URL https:
//www.pnas.org/content/93/26/15146.

[3] Pierre Dönnes and Annette Höglund. Predicting
protein subcellular localization: Past, present,
and future. Genomics, Proteomics Bioinfor-
matics, 2(4):209–215, 2004. ISSN 1672-0229.
doi:https://doi.org/10.1016/S1672-0229(04)02027-
3. URL https://www.sciencedirect.com/
science/article/pii/S1672022904020273.

[4] Juan Cedano, Patrick Aloy, Josep A. Pérez-Pons,
and Enrique Querol. Relation between amino
acid composition and cellular location of pro-
teins11edited by f. e. cohen. Journal of Molecular
Biology, 266(3):594–600, 1997. ISSN 0022-2836.
doi:https://doi.org/10.1006/jmbi.1996.0804. URL
https://www.sciencedirect.com/science/
article/pii/S0022283696908049.

[5] Chin-Sheng Yu, Chih-Jen Lin, and Jenn-Kang
Hwang. Predicting subcellular localization of
proteins for gram-negative bacteria by support
vector machines based on n-peptide composi-
tions. Protein Science, 13(5):1402–1406, 2004.
doi:https://doi.org/10.1110/ps.03479604. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1110/ps.03479604.

[6] Richard Mott, Jörg Schultz, Peer Bork, and Chris P
Ponting. Predicting protein cellular localization us-
ing a domain projection method. Genome research,
12(8):1168–1174, 2002. ISSN 1088-9051.

[7] Edward M. Marcotte, Ioannis Xenarios, Alexander
M. Van der Bliek, and David Eisenberg. Localizing

https://doi.org/10.1126/science.aal3321
https://science.sciencemag.org/content/356/6340/eaal3321
https://science.sciencemag.org/content/356/6340/eaal3321
https://doi.org/10.1073/pnas.93.26.15146
https://www.pnas.org/content/93/26/15146
https://www.pnas.org/content/93/26/15146
https://doi.org/https://doi.org/10.1016/S1672-0229(04)02027-3
https://doi.org/https://doi.org/10.1016/S1672-0229(04)02027-3
https://www.sciencedirect.com/science/article/pii/S1672022904020273
https://www.sciencedirect.com/science/article/pii/S1672022904020273
https://doi.org/https://doi.org/10.1006/jmbi.1996.0804
https://www.sciencedirect.com/science/article/pii/S0022283696908049
https://www.sciencedirect.com/science/article/pii/S0022283696908049
https://doi.org/https://doi.org/10.1110/ps.03479604
https://onlinelibrary.wiley.com/doi/abs/10.1110/ps.03479604
https://onlinelibrary.wiley.com/doi/abs/10.1110/ps.03479604

proteins in the cell from their phylogenetic profiles.
Proceedings of the National Academy of Sciences
- PNAS, 97(22):12115–12120, 2000. ISSN 0027-
8424.

[8] Emily Chia-Yu Su, Hua-Sheng Chiu, Allan Lo, Jenn-
Kang Hwang, Ting-Yi Sung, and Wen-Lian Hsu.
Protein subcellular localization prediction based on
compartment-specific features and structure conser-
vation. BMC bioinformatics, 8(1):330–330, 2007.
ISSN 1471-2105.

[9] A. Reinhardt and T. Hubbard. Using neural networks
for prediction of the subcellular location of proteins.
Nucleic Acids Research, 26(9):2230–2236, 05 1998.
ISSN 0305-1048. doi:10.1093/nar/26.9.2230. URL
https://doi.org/10.1093/nar/26.9.2230.

[10] Kenta Nakai and Paul Horton. Psort: a program for
detecting sorting signals in proteins and predicting
their subcellular localization. Trends in biochemi-
cal sciences (Amsterdam. Regular ed.), 24(1):34–35,
1999. ISSN 0968-0004.

[11] John C. Platt. Probabilistic outputs for support vec-
tor machines and comparisons to regularized likeli-
hood methods. In ADVANCES IN LARGE MARGIN
CLASSIFIERS, pages 61–74. MIT Press, 1999.

6 Appendices
6.1 A: Code briefing

1. Libraries required: BioPython, NumPy, Pandas, os,
re, Scikitlearn, Seaborn, Matplotlib

2. Feature transformation: A class
Data(raw_data, features, lbl_format, scale)
was created to perform the feature transformation
and preprocessing. raw_data is a dictionary
of the sequences and other meta-data such as
the identifiers. features is a list of the de-
sired features to include, for example it can be
[’seqlen’, ’mol_wt’, ’aromaticity’] to
include just the sequence length, molecular weight,
aromaticity in the feature space or ’all’ to include
all features. scale processes the features by
standardization or normalization. lbl_format
specifies the encoding of labels, as one-hot encoded
form or plain numerical encoding.

3. Feature analysis: Pandas function .corr()was used
to compute correlation coefficients for each of the
features and seaborn was used to visualize the corre-
lations as heatmaps.

4. Model Development:

(a) SVM: scikitlearn’s SVM module was used.
(b) Neural Network: Neural networks were imple-

mented using Pytorch.
i. seqData : a python class inherited from

Pytorch Dataset class. This accepts the
data matrix and true labels, which it will
convert into PyTorch tensors.

ii. MLP(Layers, p) : The deep neu-
ral network class which inherits from
nn.Module. Can take any architecture as
specified in Layers, a list containing num-
ber of nodes in each layer of network. The
dropout to apply on network can be speci-
fied through p.

5. Model training: SVM

(a) Data splitting: This was performed using Scik-
itlearn train_test_split function.

(b) Grid search + Cross validation : For
performing cross-validation, a function
crossval(data, model, nFolds, shuffle)
was created. data is the feature data. model
is the model used, nFolds is the number of
folds that will be performed, and shuffle
accepts a boolean to shuffle/not shuffle the data
before cross-validation. The grid search over

https://doi.org/10.1093/nar/26.9.2230
https://doi.org/10.1093/nar/26.9.2230

hyperparameters is performed using simple
for-loops.

6. Model training: Neural network

(a) Data splitting : This was performed using Scik-
itlearn train_test_split function.

(b) train() : This function performs model train-
ing and returns a dictionary history which
contains the model loss and accuracies per
epoch. It inputs the model to be trained
(which will be an instance of MLP()), a tuple
of the training and validation datasets (which
are instances of seqData), and other hyper-
parameters such as the epochs, batch_size,
optimizer, lr (learning rate). Hyperparame-
ter settings are provided in Table 2.

(c) evaluate() : Evaluates the model on data by
computing the loss and accuracy. Accepts vari-
able X and y which are the inputs and true out-
puts, the loss function nn.CrossEntropy()
and the model instance itself.

(d) Grid-search + Cross validation: The cross-
validation function from “Model training :
SVM" was used, modified to deal with pytorch
models. Grid search was performed using for-
loops over range of hyperparameters.

7. Model Evaluation

(a) Performance on test set with confidence es-
timation: For the SVM, this is performed
by model.score() which accepts the test
data and its true labels to compute ac-
curacy. For confidence estimation, the
model.predict_proba() function is used
which implements Platt scaling. This takes the
test data and creates a (=30C0, 5) matrix of the
class probabilities for each data point. For the
neural network, the model is applied on the test
data and then probabilities are created using
nn.Softmax(). These probabilities are con-
verted to final predictions using np.argmax().

(b) Confusionmatrices : created using scikitlearn’s
confusion_matrix function

(c) Metrics: Precision, recall and F1 score are com-
puted using scikitlearn’s precision_score,
recall_score and f1_score functions.

6.2 B: Correlation matrix of feature set

The correlation matrix for all 46 features is presented in
Figure 4.

6.3 C:Cross-validation rawdata for SVMandNeural
Network

Below are the cross-validation results for each variant
of the SVM. The results are in the form of a (5, 2) matrix
where the first column stores the training set accuracy and
the second column stores the validation set accuracies and
each of the five rows corresponds to the folds of cross-
validation.

C = 1, gamma = 2^-7.0
[[0.69714366 0.65845465]
[0.69784374 0.63829787]
[0.6925231 0.66069429]
[0.69634607 0.65546218]
[0.69872603 0.64313725]]

C = 1, gamma = 2^-8.0
[[0.65527863 0.63941769]
[0.65905909 0.62038074]
[0.65359843 0.64221725]
[0.65854683 0.64257703]
[0.65966681 0.62128852]]

C = 1, gamma = 2^-9.0
[[0.62797536 0.6237402]
[0.63651638 0.61478163]
[0.63035564 0.6181411]
[0.62956741 0.61848739]
[0.63558729 0.60448179]]

C = 1, gamma = 2^-10.0
[[0.60795295 0.59966405]
[0.60963316 0.60022396]
[0.60739289 0.59406495]
[0.60828783 0.59719888]
[0.6102478 0.58263305]]

C = 1, gamma = 2^-11.0
[[0.58429011 0.57894737]
[0.5875105 0.57950728]
[0.5841501 0.57782755]
[0.58868823 0.57591036]
[0.58672827 0.56526611]]

C = 1, gamma = 2^-12.0
[[0.52646318 0.52239642]
[0.53626435 0.52967525]
[0.52758331 0.52967525]
[0.5349293 0.52661064]
[0.53772925 0.51820728]]

C = 1, gamma = 2^-13.0
[[0.47535704 0.48152296]
[0.48179782 0.45968645]
[0.47619714 0.48488242]
[0.47529049 0.47619048]
[0.47753045 0.47002801]]

C = 1, gamma = 2^-14.0
[[0.37538505 0.37737962]
[0.38364604 0.38913774]
[0.37174461 0.38073908]
[0.37365253 0.38151261]
[0.38723226 0.36246499]]

C = 10, gamma = 2^-7.0
[[0.81545785 0.66181411]
[0.81489779 0.65397536]
[0.81489779 0.66909295]
[0.81562369 0.67114846]
[0.81296374 0.67058824]]

C = 10, gamma = 2^-8.0
[[0.74096892 0.6556551]
[0.74040885 0.64109742]
[0.73564828 0.66629339]
[0.73764525 0.66610644]
[0.73582528 0.66834734]]

C = 10, gamma = 2^-9.0
[[0.68636236 0.65229563]
[0.69154299 0.63213886]
[0.68370204 0.65509518]
[0.68724626 0.65770308]
[0.68724626 0.63697479]]

C = 10, gamma = 2^-10.0
[[0.65065808 0.63381859]
[0.65541865 0.62038074]
[0.64939793 0.63885778]
[0.65252695 0.63137255]
[0.65392692 0.61904762]]

C = 10, gamma = 2^-11.0
[[0.63091571 0.61366181]
[0.63525623 0.61422172]
[0.62881546 0.61982083]
[0.62900742 0.61904762]
[0.63250735 0.60392157]]

C = 10, gamma = 2^-12.0
[[0.6157939 0.60470325]
[0.61761411 0.6019037]
[0.61397368 0.60526316]
[0.61332773 0.60392157]
[0.61962761 0.59271709]]

C = 10, gamma = 2^-13.0
[[0.6024923 0.59406495]
[0.60725287 0.5912654]
[0.60193223 0.59966405]
[0.60632787 0.59327731]
[0.60758785 0.57983193]]

C = 10, gamma = 2^-14.0
[[0.5875105 0.5806271]
[0.58877065 0.57950728]
[0.58611033 0.57614782]
[0.59106818 0.57927171]
[0.59064819 0.57142857]]

C = 100, gamma = 2^-7.0
[[0.96863624 0.64389698]
[0.95715486 0.6237402]
[0.96359563 0.63829787]
[0.96836063 0.63809524]
[0.96234075 0.62072829]]

C = 100, gamma = 2^-8.0
[[0.85634276 0.6450168]
[0.86110333 0.62653975]
[0.85872305 0.64893617]
[0.86070279 0.65098039]
[0.86196276 0.64761905]]

C = 100, gamma = 2^-9.0
[[0.77975357 0.65397536]
[0.77961355 0.63829787]
[0.774993 0.66349384]
[0.77852443 0.65938375]

[0.77740445 0.65938375]]

C = 100, gamma = 2^-10.0
[[0.72220666 0.65397536]
[0.72234668 0.64445689]
[0.71268552 0.66517357]
[0.71692566 0.65658263]
[0.71636567 0.66106443]]

C = 100, gamma = 2^-11.0
[[0.67292075 0.65285554]
[0.67684122 0.62765957]
[0.66984038 0.65341545]
[0.6750665 0.64593838]
[0.67562649 0.62857143]]

C = 100, gamma = 2^-12.0
[[0.64295715 0.63325868]
[0.64631756 0.61926092]
[0.63875665 0.63605823]
[0.64412712 0.62913165]
[0.64706706 0.61288515]]

C = 100, gamma = 2^-13.0
[[0.62629516 0.61030235]
[0.63049566 0.6075028]
[0.62517502 0.62430011]
[0.62914742 0.61512605]
[0.63166737 0.60560224]]

C = 100, gamma = 2^-14.0
[[0.6183142 0.5968645]
[0.6208345 0.60134378]
[0.61355363 0.61534155]
[0.61878762 0.60504202]
[0.62200756 0.58711485]]

Next, we present the raw cross-validation results for
each variant of the Neural Network. The results are in
the form of a matrix where the columns are the train loss,
validation loss, train accuracy and validation accuracy.
The rows correspond to each cross-validation fold.

Layers = [45, 5], Dropout = 0.0
[[0.989 1.004 0.605 0.580]
[0.974 1.024 0.606 0.596]
[0.984 0.980 0.604 0.607]
[0.987 0.970 0.608 0.592]
[0.971 1.034 0.607 0.583]]

Layers = [45, 5], Dropout = 0.1
[[0.988 1.003 0.607 0.583]
[0.974 1.023 0.605 0.597]
[0.984 0.980 0.603 0.606]
[0.987 0.970 0.608 0.591]
[0.971 1.034 0.607 0.583]]

Layers = [45, 5], Dropout = 0.2
[[0.988 1.003 0.607 0.583]
[0.974 1.023 0.605 0.597]
[0.984 0.980 0.603 0.606]
[0.987 0.970 0.608 0.591]
[0.971 1.034 0.607 0.583]]

Layers = [45, 5], Dropout = 0.3
[[0.988 1.003 0.607 0.583]
[0.974 1.023 0.605 0.597]
[0.984 0.980 0.603 0.606]
[0.987 0.970 0.608 0.591]
[0.971 1.034 0.607 0.583]]

Layers = [45, 16, 5], Dropout = 0.0
[[0.819 0.899 0.661 0.610]
[0.780 0.852 0.678 0.630]

[0.766 0.809 0.681 0.671]
[0.757 0.789 0.686 0.668]
[0.739 0.827 0.688 0.667]]

Layers = [45, 16, 5], Dropout = 0.1
[[0.880 0.940 0.633 0.591]
[0.853 0.916 0.644 0.610]
[0.854 0.871 0.641 0.629]
[0.845 0.861 0.644 0.639]
[0.823 0.922 0.652 0.643]]

Layers = [45, 16, 5], Dropout = 0.2
[[0.931 0.981 0.610 0.569]
[0.909 0.958 0.616 0.584]
[0.912 0.928 0.616 0.597]
[0.896 0.916 0.626 0.620]
[0.875 0.991 0.628 0.607]]

Layers = [45, 16, 5], Dropout = 0.3
[[0.981 1.016 0.599 0.574]
[0.957 0.994 0.599 0.562]
[0.962 0.968 0.598 0.586]
[0.945 0.971 0.603 0.593]
[0.929 1.020 0.609 0.583]]

Layers = [45, 32, 5], Dropout = 0.0
[[0.750 0.870 0.688 0.632]
[0.696 0.800 0.719 0.665]
[0.673 0.749 0.730 0.681]
[0.657 0.735 0.736 0.691]
[0.635 0.767 0.738 0.711]]

Layers = [45, 32, 5], Dropout = 0.1
[[0.812 0.903 0.665 0.613]
[0.775 0.866 0.682 0.629]
[0.758 0.813 0.682 0.656]
[0.751 0.838 0.692 0.655]
[0.727 0.851 0.701 0.661]]

Layers = [45, 32, 5], Dropout = 0.2
[[0.853 0.933 0.656 0.593]
[0.814 0.904 0.658 0.610]
[0.804 0.863 0.668 0.639]
[0.798 0.865 0.666 0.662]
[0.768 0.892 0.674 0.645]]

Layers = [45, 32, 5], Dropout = 0.3
[[0.893 0.962 0.643 0.578]
[0.856 0.942 0.644 0.601]
[0.845 0.892 0.646 0.626]
[0.837 0.892 0.653 0.621]
[0.805 0.919 0.660 0.641]]

6.4 D: Sample predictions of SVM and neural net-
work on test set

The predictions of the SVMandNeuralNetworkmodels
on 20 sample sequences from the test set are presented in
Tables 9 and 10. The final prediction is the class with the
greatest probability, highlighted in yellow.

6.5 E: Summary statistic for commonly misclassified
cytoplasmic and nuclear proteins

To compare the cytoplasmic and nuclear sequences that
were "confused" in both models, summary statistics were
computed for the 45 features. These are presented in
Tables 11 and 12.

cyto mito nucleus other secreted
0 0.424113 0.311285 0.143910 0.085788 0.034904
1 0.051494 0.049330 0.017454 0.251358 0.630364
2 0.808928 0.050235 0.096800 0.023309 0.020728
3 0.074751 0.086184 0.040559 0.771037 0.027469
4 0.453267 0.113294 0.309718 0.038467 0.085253
5 0.228516 0.023876 0.084569 0.016099 0.646940
6 0.422464 0.110218 0.010777 0.008328 0.448213
7 0.325229 0.362526 0.264230 0.032175 0.015840
8 0.585444 0.018281 0.378213 0.002149 0.015912
9 0.554836 0.004509 0.439640 0.000767 0.000247
10 0.258752 0.022560 0.105534 0.600820 0.012333
11 0.416950 0.010575 0.571795 0.000298 0.000382
12 0.007947 0.000300 0.000258 0.000258 0.991237
13 0.005288 0.001181 0.000871 0.992558 0.000101
14 0.215573 0.568407 0.090456 0.051155 0.074409
15 0.204174 0.001619 0.790447 0.001773 0.001988
16 0.566811 0.015208 0.080246 0.023838 0.313896
17 0.645000 0.030483 0.205075 0.109641 0.009802
18 0.001301 0.001893 0.002138 0.000005 0.994663
19 0.583731 0.025450 0.347193 0.038849 0.004778

Table 9: Sample predictions of SVM model on test set

cyto mito nucleus other secreted
0 0.3676787 0.3601055 0.1791812 0.0644130 0.0286216
1 0.0929130 0.0810931 0.0235273 0.5714332 0.2310334
2 0.7489110 0.0283294 0.1048155 0.0883761 0.0295680
3 0.0528309 0.0522961 0.0201097 0.8578848 0.0168787
4 0.2268762 0.0854167 0.5721152 0.0196546 0.0959372
5 0.1939268 0.0332159 0.1475430 0.0222720 0.6030424
6 0.1760980 0.1638564 0.0007894 0.0339804 0.6252757
7 0.3732996 0.3865525 0.1895542 0.0106981 0.0398957
8 0.3573385 0.0194676 0.5796671 0.0006266 0.0429002
9 0.5259020 0.0057225 0.4678053 0.0002207 0.0003494
10 0.1680456 0.0221073 0.0735017 0.7184054 0.0179401
11 0.4027032 0.0052567 0.5913814 0.0001643 0.0004944
12 0.0473804 0.0021528 0.0008644 0.0005605 0.9490419
13 0.0032484 0.0026602 0.0004791 0.9934690 0.0001433
14 0.2200546 0.5239266 0.1396801 0.0255986 0.0907402
15 0.2478486 0.0074273 0.7432650 0.0001480 0.0013110
16 0.4152693 0.0176836 0.0522589 0.0050615 0.5097267
17 0.5710899 0.0549596 0.2333052 0.1176442 0.0230011
18 0.0031681 0.0001558 0.0076256 0.0000002 0.9890504
19 0.4968877 0.0281772 0.4305609 0.0390130 0.0053612

Table 10: Sample predictions of Neural Network model on test set

count mean std min 25% 50% 75% max
seqlen 136.0 634.7206 386.0173 113.0000 355.0000 561.0000 838.5000 2542.0000
isoe_pt 136.0 7.1110 1.7588 4.1261 5.3810 6.9156 8.8331 10.1360
global_A 136.0 0.0611 0.0234 0.0223 0.0454 0.0591 0.0716 0.1582
global_C 136.0 0.0146 0.0103 0.0000 0.0075 0.0130 0.0204 0.0615
global_D 136.0 0.0562 0.0167 0.0190 0.0447 0.0542 0.0657 0.1010
global_E 136.0 0.0786 0.0262 0.0304 0.0618 0.0738 0.0901 0.1643
global_F 136.0 0.0330 0.0126 0.0000 0.0236 0.0329 0.0429 0.0663
global_G 136.0 0.0521 0.0212 0.0099 0.0388 0.0501 0.0635 0.1231
global_H 136.0 0.0252 0.0106 0.0056 0.0180 0.0244 0.0313 0.0596
global_I 136.0 0.0450 0.0161 0.0035 0.0343 0.0427 0.0534 0.0882
global_K 136.0 0.0716 0.0273 0.0122 0.0537 0.0692 0.0863 0.1544
global_L 136.0 0.0844 0.0211 0.0220 0.0682 0.0868 0.0996 0.1283
global_M 136.0 0.0211 0.0075 0.0035 0.0162 0.0204 0.0260 0.0417
global_N 136.0 0.0512 0.0185 0.0063 0.0406 0.0517 0.0639 0.1182
global_P 136.0 0.0603 0.0265 0.0197 0.0416 0.0570 0.0698 0.2053
global_Q 136.0 0.0474 0.0201 0.0063 0.0359 0.0439 0.0562 0.1605
global_R 136.0 0.0536 0.0187 0.0108 0.0419 0.0538 0.0635 0.1266
global_S 136.0 0.1011 0.0255 0.0442 0.0810 0.1003 0.1195 0.1758
global_T 136.0 0.0577 0.0135 0.0249 0.0497 0.0573 0.0647 0.1002
global_V 136.0 0.0516 0.0119 0.0207 0.0445 0.0506 0.0592 0.0956
global_W 136.0 0.0091 0.0061 0.0000 0.0045 0.0079 0.0123 0.0334
global_Y 136.0 0.0252 0.0114 0.0000 0.0176 0.0248 0.0333 0.0537
local_A 136.0 0.0628 0.0500 0.0000 0.0200 0.0600 0.0800 0.2200
local_C 136.0 0.0113 0.0199 0.0000 0.0000 0.0000 0.0200 0.1000
local_D 136.0 0.0634 0.0436 0.0000 0.0400 0.0600 0.0800 0.2000
local_E 136.0 0.0815 0.0509 0.0000 0.0400 0.0800 0.1000 0.3200
local_F 136.0 0.0249 0.0244 0.0000 0.0000 0.0200 0.0400 0.1000
local_G 136.0 0.0609 0.0579 0.0000 0.0200 0.0500 0.0800 0.2800
local_H 136.0 0.0234 0.0267 0.0000 0.0000 0.0200 0.0400 0.1400
local_I 136.0 0.0315 0.0277 0.0000 0.0200 0.0200 0.0400 0.1200
local_K 136.0 0.0674 0.0518 0.0000 0.0350 0.0600 0.1000 0.2200
local_L 136.0 0.0754 0.0461 0.0000 0.0400 0.0700 0.1000 0.2600
local_M 136.0 0.0365 0.0220 0.0200 0.0200 0.0200 0.0400 0.1200
local_N 136.0 0.0500 0.0454 0.0000 0.0200 0.0400 0.0800 0.2000
local_P 136.0 0.0688 0.0523 0.0000 0.0400 0.0600 0.1000 0.3000
local_Q 136.0 0.0488 0.0428 0.0000 0.0200 0.0400 0.0650 0.2800
local_R 136.0 0.0566 0.0426 0.0000 0.0200 0.0600 0.0800 0.2600
local_S 136.0 0.1065 0.0583 0.0000 0.0600 0.1000 0.1400 0.3400
local_T 136.0 0.0541 0.0415 0.0000 0.0200 0.0400 0.0800 0.2600
local_V 136.0 0.0493 0.0366 0.0000 0.0200 0.0400 0.0600 0.1800
local_W 136.0 0.0057 0.0124 0.0000 0.0000 0.0000 0.0000 0.0800
local_Y 136.0 0.0213 0.0238 0.0000 0.0000 0.0200 0.0400 0.1200
aromacity 136.0 0.0673 0.0218 0.0190 0.0545 0.0668 0.0820 0.1207
instability_index 136.0 53.8492 10.8688 32.0025 47.2632 53.3583 59.3084 94.6690
gravy 136.0 -0.6785 0.2599 -1.3730 -0.8353 -0.6617 -0.4772 -0.1764

Table 11: Summary statistics for misclassified cytoplasmic proteins in SVM and Neural Network models

count mean std min 25% 50% 75% max
seqlen 117.0 783.3077 648.2847 81.0000 361.0000 594.0000 1056.0000 4717.0000
isoe_pt 117.0 6.2663 1.2292 4.5226 5.4183 6.0155 6.7291 10.3107
global_A 117.0 0.0677 0.0169 0.0275 0.0571 0.0660 0.0783 0.1175
global_C 117.0 0.0177 0.0104 0.0000 0.0119 0.0168 0.0230 0.0544
global_D 117.0 0.0525 0.0121 0.0167 0.0450 0.0514 0.0608 0.0838
global_E 117.0 0.0813 0.0240 0.0255 0.0665 0.0775 0.0947 0.1479
global_F 117.0 0.0363 0.0137 0.0000 0.0280 0.0344 0.0447 0.0735
global_G 117.0 0.0565 0.0192 0.0186 0.0445 0.0539 0.0676 0.1111
global_H 117.0 0.0236 0.0079 0.0075 0.0175 0.0232 0.0285 0.0442
global_I 117.0 0.0497 0.0176 0.0130 0.0371 0.0487 0.0616 0.0988
global_K 117.0 0.0623 0.0180 0.0231 0.0510 0.0619 0.0724 0.1111
global_L 117.0 0.1012 0.0249 0.0395 0.0848 0.1001 0.1160 0.1922
global_M 117.0 0.0225 0.0074 0.0090 0.0172 0.0211 0.0275 0.0415
global_N 117.0 0.0399 0.0160 0.0045 0.0307 0.0387 0.0479 0.1032
global_P 117.0 0.0537 0.0222 0.0174 0.0383 0.0497 0.0659 0.1710
global_Q 117.0 0.0489 0.0165 0.0095 0.0388 0.0464 0.0571 0.1122
global_R 117.0 0.0551 0.0155 0.0112 0.0449 0.0549 0.0645 0.1169
global_S 117.0 0.0821 0.0223 0.0225 0.0649 0.0805 0.0971 0.1618
global_T 117.0 0.0506 0.0132 0.0257 0.0433 0.0493 0.0574 0.0931
global_V 117.0 0.0592 0.0157 0.0255 0.0480 0.0589 0.0701 0.1111
global_W 117.0 0.0112 0.0075 0.0000 0.0060 0.0102 0.0141 0.0415
global_Y 117.0 0.0279 0.0101 0.0000 0.0218 0.0268 0.0325 0.0665
local_A 117.0 0.0694 0.0432 0.0000 0.0400 0.0600 0.1000 0.2200
local_C 117.0 0.0169 0.0206 0.0000 0.0000 0.0200 0.0200 0.1000
local_D 117.0 0.0526 0.0340 0.0000 0.0200 0.0400 0.0800 0.2200
local_E 117.0 0.0807 0.0454 0.0000 0.0400 0.0800 0.1200 0.2200
local_F 117.0 0.0338 0.0278 0.0000 0.0200 0.0400 0.0400 0.1000
local_G 117.0 0.0631 0.0462 0.0000 0.0200 0.0600 0.0800 0.2400
local_H 117.0 0.0207 0.0200 0.0000 0.0000 0.0200 0.0400 0.0800
local_I 117.0 0.0506 0.0358 0.0000 0.0200 0.0400 0.0800 0.1600
local_K 117.0 0.0609 0.0409 0.0000 0.0400 0.0600 0.0800 0.1600
local_L 117.0 0.0880 0.0433 0.0000 0.0600 0.0800 0.1200 0.2200
local_M 117.0 0.0349 0.0184 0.0200 0.0200 0.0400 0.0400 0.1000
local_N 117.0 0.0369 0.0280 0.0000 0.0200 0.0400 0.0600 0.1200
local_P 117.0 0.0540 0.0351 0.0000 0.0200 0.0400 0.0800 0.1800
local_Q 117.0 0.0451 0.0298 0.0000 0.0200 0.0400 0.0600 0.1200
local_R 117.0 0.0583 0.0386 0.0000 0.0200 0.0400 0.0800 0.1800
local_S 117.0 0.0879 0.0505 0.0000 0.0400 0.0800 0.1200 0.2800
local_T 117.0 0.0523 0.0330 0.0000 0.0400 0.0400 0.0800 0.1600
local_V 117.0 0.0571 0.0368 0.0000 0.0400 0.0600 0.0800 0.1600
local_W 117.0 0.0111 0.0154 0.0000 0.0000 0.0000 0.0200 0.0600
local_Y 117.0 0.0256 0.0260 0.0000 0.0000 0.0200 0.0400 0.1400
aromacity 117.0 0.0753 0.0210 0.0247 0.0628 0.0743 0.0889 0.1344
instability_index 117.0 48.4544 10.4867 8.4775 42.3365 48.9728 53.9233 81.6200
gravy 117.0 -0.4346 0.2318 -1.0911 -0.6110 -0.4068 -0.2603 0.1829

Table 12: Summary statistics for misclassified nuclear proteins in both SVM and Neural Network models

Figure 4: Pearson Correlation coefficient measured between the features and visualized as a heat map

	Introduction
	Methodology
	Approaches
	Support Vector Machines (SVMs)
	Neural Networks

	Dataset
	Feature Selection
	Data Pre-processing
	Model Training and Cross Validation
	Dataset Splitting
	SVM model search
	Neural Network model search

	Model Evaluation
	Prediction on test data
	Confidence Estimation on model predictions
	Prediction on blind test data

	Code

	Results
	Best models from Grid Search + Cross-Validation
	Performance of best SVM and Neural Network
	Confusion Matrices
	Metrics calculated from Confusion matrices

	Performance on blind test sequences

	Discussion
	Conclusion and Next Steps
	Appendices
	A: Code briefing
	B: Correlation matrix of feature set
	C: Cross-validation raw data for SVM and Neural Network
	D: Sample predictions of SVM and neural network on test set
	E: Summary statistic for commonly misclassified cytoplasmic and nuclear proteins

